20 Problem with solution of Entropy

A body at 200oC undergoes an reversible isothermal process. The heat energy removed in the process is 7875 J. Determine the change in the entropy of the body.
   System  :  Closed system
   Known  :         T1 = T2 
                                           =  200oC
                               =  473 K
                   Qrejected  =  7875 J
   Process :  Isothermal
   To find  :  Ds

   Diagram   :
Analysis   :  S2 - S1  =  for an isothermal process
                                    =
                                    =  - 16.65 J/K.
   Comment  :    Entropy decreases as heat is removed from the system.


A mass of 5 kg of liquid water is cooled from 100oC to 20oC. Determine the change in entropy.
   System      :    Closed system
   Known     :    Mass of water = 5kg
                                          T1   = 100oC = 373 K
                                          T2   = 20oC   = 293 K
   Process    :    Constant pressure
   To find     :    Change in entropy
   Diagrams :   
  
   Assumptions  : 1) The process is reversible
                           2) The specific heat of liquid water is constant
    Analysis        :           S2 - S1  =  m
                           For this problem
                                           p2  =  p1 & Cp = 4.186
                               \ S2 - S1  =  5
                                                 = -5.053
   Comment                   :  Entropy decreases as heat is removed from the system.
Prob : 5.3    Air is compressed isothermally from 100 kPa to 800 kPa. Determine the change in specific entropy of the air.
   System  :  Closed/Open
   Known  :  p1  = 100 kPa
                   p2  = 800 kPa
   To find  :  DS - change in Specific entropy
   Diagram   :   
   

   Analysis   :    DS =
                             =  - R ln      [Since the process is isothermal]
                             =  - 0.287 x ln
                             =  - 0.597 kJ/kgK.
Prob : 5.4    A mass of 5 kg of air is compressed from 90 kPa, 32oC to 600 kPa in a polytropic process, pV1.3= constant. Determine the change entropy.
   System  :  Closed / Open
   Known  :  p1  =  90 kPa
                   T1 =  32oC = 305 K
                   p2  =  600 kPa
                   m  =  5 kg
   Process :  pV1.3 = Constant
   To find  :  DS - Change in entropy
   Diagram   :
  




Analysis   :     S2  -  S1  =  m                
                   Where T2  =  T1 
                                   = 305
                                  = 473 K
                \ S2  -  S1  =  5          
                                  = - 0.517 kJ/K.
   Comment   :   For air the ratio of Cp and Cv is equal to 1.4. Therefore the polytropic          index n = 1.3(<1.4) indicates that some heat is removed from the system              resulting in negative entropy.
Prob : 5.5    A rigid insulated container holds 5 kg of an ideal gas. The gas is stirred so that its state changes from 5 kPa and 300 K to 15 kPa. Assuming Cp = 1.0 kJ/kgK and g = 1.4, determine the change of entropy of the system.
   System  :  Closed
   Process :  Constant volume since the gas is stirred in an rigid container
   Known  :  p1  =  5 kPa                        p2  = 15 kPa
                   m  =  5 kg                          Cp = 1.0 kJ/kgK
                   T1  =  300 K                       g  = 1.4
   Diagrams :
  






   To find     :    Change in entropy
   Analysis   :    S2 - S1 = m
                        By applying the state equation.
                                   
                                        Since V2  = V1 
                                       
                                       
                           Also        R  =  Cp - Cv 
                                              =
                                              =
                                              =
                                               = 0.286 kJ/kgK
                Substituting these values we get
                                  S2 - S1  =  5
                                               = 3.922 kJ/K
   Comment  :     Though this process is adiabatic it is not isentropic since the process of stirring is an irreversible process.
Prob : 5.6    An insulated rigid vessel is divided into two chambers of equal volumes. One chamber contains air at 500 K and 2 MPa. The other chamber is evacuated. If the two chambers are connected d, what would be the entropy change ?
   System  :  Closed system
   Process :  Unresisted expansion
   Known  :  T1 = 500 K
                   p1 = 2 ´ 103 kPa
   To find  :  Entropy change
   Diagrams :   
    Analysis   :                s2 - s1  =
                                    s2 - s1  =
                        After expansion air will occupy the entire volume of the container.
                                    \  V2  =  2V1 
                        Also            1W2  =  0 since it is an unresisted expansion
                                        Q12  =  0 since the vessel is insulated
                        Applying the first law of thermodynamics
                                        Q12  =  DU + 1W2 
                        Therefore  Du  = 0
                        For air
                          mcv(T2 - T1)  =  0
                        i.e.            T2  =  T1 
                        Hence s2 - s1  =  Cvln + Rln  
                                               =  0.287 ln
                                               =  0.199 kJ/kgK
   Comment   :   Though the process is adiabatic entropy increases as the process involving                  unresisted expansion is an irreversible process. It also proves the fact                  that
                                               
Prob : 5.7    An adiabatic chamber is partitioned into two equal compartments. On one side there is oxygen at 860 kPa and 14oC. On the other side also, there is oxygen, but at 100 kPa and 14oC. The chamber is insulated and has a volume of 7500 cc. The partition is abruptly removed. Determine the final pressure and the change in entropy of the universe.
     System  :  Closed
   Process :  Adiabatic Mixing
   Known  :
                       Subsystem I          Subsystem II
                              Fluid                    Oxygen              Oxygen
                       Initial pressure             850 kPa              100 kPa
                   Initial Temperature            14oC                   14oC
                       Initial volume                                            
   Diagrams :  
    Analysis   :     Here the energy interaction is taking place only between the two fluids and therefore the energy lost by one fluid should be equal to the energy gained by the other fluid. Taking tF as the final temperature we get
                                   
                        Since the same fluid is stored in both the systems at the same temperature
                                                     C1  =  C2  and
                                                       t1  =  t2 = 14oC
                        Therefore the final temperature will also be 14oC
                        After removing partition total mass of oxygen is occupying the entire 7500cc at 14oC. Hence the final pressure can be computed as given below :
                       
                                                             
                                                               = 0.0427 kg
                       
                                                             
                                                                = 0.00503 kg
                        To find the final pressure
                                              =  m1 + m2 
                                                 
                                                 
                                                        = 475 kPa
                                          DSsystem    = DS1 + DS2
                                                      
                                                       
                                        DSsurroundings = 0
                                            DSuniverse = 8.596
Prob : 5.8    Two vessels, A and B each of volume 3 m3 may be connected by a tube of negligible volume. Vessel A contains air at 0.7 MPa, 95oC while vessel B contains air at 0.35 MPa, 205oC. Find the change of entropy when A is connected to B by working from the first principles and assuming the mixing to be complete and adiabatic.
   System  :  Closed
   Process :  Adiabatic mixing
   Known  :       Properties             Subsystem A         Subsystem B
                         Fluid                         Air                         Air
                      pressure                    0.7 MPa                0.35 MPa
                       volume                       3 m3                       3 m3
                   Temperature                   95oC                     205oC

   Diagrams :


   Analysis     :   Since the energy interaction is taking place only between the two fluids energy lost by one fluid is equal to the energy gained by the other fluid.
                                                       \ QA  =  QB                  
                         Taking t2 as the final temperature after mixing maCa (t2 - t1a) = mbCb(t1b -t2) Since in both A and B the same fluid is stored, Ca = Cb 
                     Also ma  =                                                      
                                   =                                                                
                                   = 19.9 kg                 
                             mb  = 
                                    = 
                                       =  7.65 kg
                 19.9 (t2 - 95)  =  7.65 (205 - t2)
                  2.6 (t2  - 95)  =  (205 - t2)
                       2.6t2 + t2  =  205 + 2.6 ´ 95
                               t2  = 125.6oC
             Entropy change =  DSA + DSB 
                             DSA  =  mA 
                                 
                           DSB  =  mB 
                                 
                          DSsys = 5.08 + 0.525
                                  = 5.605
                          DSsurr = 0
                   \  DSuniverse = 5.605
           Final pressure p2 =
                                   = 
                                   =  525 kPa
            
Prob : 5.9    Air enters a turbine at 400oC, 30 bar and velocity 160 m/s. It leaves the turbine at 2 bar, 120oC and velocity 100 m/s. At steady state it develops 200 kJ of work per kg of air. Heat transfer occurs between the surroundings and the turbine at an average temperature of 350 K. Determine the rate of entropy generation.
   System  :  Open
   Process :  Steady flow
   Known  :            Properties            Inlet          Outlet
                       Pressure                   30 bar          2 bar
                       Velocity                 160 m/s      100 m/s
                   Temperature                400oC         120oC
                   Ambient temperature     = 350 K
                   Work output                 = 200 kJ/kg                       
   Diagram  :

   To find     :    Rate of entropy generation       
    Analysis   :   
                                        
                   For unit mass  = Cp ln
                                                    = 1.005 ln
                                                    = 0.236 kJ/kgK
                                      
                       where            Qsur  =
                                                   =
                                             Qsur  =  +89.2 kJ/kg
                                         (DS)sur = 
                                                    = 0.255 kJ/kgK
                          
                                                    = 0.019 kJ/kgK.
Prob : 5.10  A turbine operating at steady state receives air at a pressure of                p1 = 3.0 bar and temperature of 390 K. Air exits the turbine at a                         pressure of p2 = 1.0 bar. The work developed is measured as 74 kJ/kg     of air flowing through the turbine. The turbine operates adiabatically,         and changes in kinetic and potential energy between inlet and exit can         be neglected. Using ideal gas model for air, determine the turbine       efficiency.
   System      :    Open
   Process    :    Steady flow
   Known      :         p1 = 3.0 bar            p2  = 1.0 bar
                              T1 = 390 K            Wa = 74 kJ/kg
   Diagrams  :         
   Analysis    :        ht  =  
                                       =   for an ideal gas
                Where
                         \  T2s  =  
                   \  T2s  =  284.9 K
                       =  Cp ( T1 - T2 ) = 74
                  \ T1 - T2  = 
                              =  73.63 K
                 Hence   ht  =  
                             =
                              =  0.7 (or 70%).
Prob : 5.11  A closed system is taken through a cycle consisting of four reversible processes. Details of the processes are listed below.  Determine the power developed if the system is executing 100 cycles per minutes.
                       Process          Q (kJ)          Temperature (K)
                                                                Initial        Final
                          1 - 2                 0               300           1000
                          2 - 3             +1000           1000          1000
                          3 - 4                 0              1000           300
                          4 - 1                 -                300            300
     System  :  Closed
   Process :   The system is executing cyclic process.
   Known  :  Heat transfer in process 12, 23 and 34 and temperature change in all the    process.
                   No of cycles per minute.
   To find  :   Power developed.
   Diagrams :  

    Analysis   :     To find the power developed Wnet per cycle must be known. From I Law Wnet = Qnet which can be computed from the following table
                       Process          Q (kJ)          Temperature (K)              DS
                                                                Initial        Final
                          1 - 2                 0               300           1000                 0                      
                          2 - 3              1000            1000          1000                 
                          3 - 4                 0              1000           300                  0
                          4 - 1                 -                300            300                DS41
                         
                   For a cyclic process                                SDf = 0
                   where f is any property
                                                                                \                SDS = 0
                   (i.e.,)     DS12 + DS23 + DS34 + DS41 = 0
                                             0 + 1 + 0 + DS41   =  0
                                                               DS41  =  -1
                   Since the process 4-1 is isothermal
                                                               =  -1
                                                                Q41  =  -300 kJ
                                                Therefore
                                                                Qnet =  Q12 + Q23 + Q34 + Q41 
                                                                       =  0 + 1000 + 0 - 300
                                                                      =  700 kJ per cycle
                                                         \   Wnet  =  Qnet = 700 kJ
                        and power developed                = 
                                                                       = 700
                                                                       = 1166.7 kW
Prob : 5.12  Two kilogram of air is heated from 200oC to 500oC at constant pressure. Determine  the change in entropy.

    System           :  Open/closed
    Working        :  Air
    fluid
    Process         :  Constant pressure heating
    Known           :  1)  t1  = 200oC
                           2)  t2  = 500oC
                                   
    Diagram        : 
    To find          : Change in entropy DS
    Analysis         : DS =
                                =
                                =
                                =  0.987 kJ/K
Prob : 5.13  A Carnot engine operated between 4oC and 280oC. If the engine produces 300 kJ of work, determine the entropy change during heat addition and heat rejection.
    System           :  Open/closed
    Process         :  The working fluid is executing Carnot cycle
    Known           :  1)  t1   =  280oC
                           2)  t2   =  4oC
                           3)  W = 300 kJ
    Diagram        :
    To find          :  1)  DS during heat addition
                           2)  DS during heat rejection
    Analysis         :  1)  In carnot engine heat is added at constant temperature
                                 Therefore            DS =
                                              Where                Qin =
                                                              h =
                                                                  =
                                                                  =  0.499
                                         Therefore   Qin  =  
                                                                  =  601.1 kJ
                                                          DS   =  
                                                                  =  
                                                                  =   1.087 kJ/K

                            2) In carnot engine heat rejection is also taking place at constant temperature
                                          Therefore  DS  = 
                                             Where   Qout  =  Qin - W
                                                                  =  601.1 - 300
                                                                  =  301.1 kJ
                                                           DS  =
                                                                  = -1.087 kJ/K
    Comment       :  In a carnot change two isothermal process and two isentropic process. Therefore DS during heat addition must be equal to DS during heating rejection so that
                                                                   
                            which obeys Clausius Inequality.
Prob : 5.14  Air flows through a perfectly insulated duct. At one section A  the pressure and temperature are respectively 2 bar 200oC and at another section B further along the duct the corresponding values are 1.5 bar and 150oC. Which way the air flowing?
    System           :  Open
    Process         :  Steady flow process
    Known           :  1)  p1   =   2 bar
                           2)  t1        =   200oC
                           3)  p2  =   1.5 bar
                           4)  t2   =   150oC
    To find          :  To know flow direction
    Diagram        :
    Analysis         : This problem cannot be solved by simple application of first law of thermodynamics. Because there is nothing to tell us whether the fluid is expanding from A to B or being compressed from B to A.
                           However, since the duct is insulated  the inference is that there is no heat transfer to or from the environment and therefore there is no change of entropy in the environment. But in any real process change of entropy of the system plus the surroundings must be positive. In otherwords DSAB > 0
                             
                                         
                                         
                           Thus SA > SB  and the flow is from B to A.
                           Even though entropy cannot be measured directly it can still be used to find the sense of flow in a well insulated duct given two salient states as above.
Prob 5.15 :       A certain fluid undergoes expansion in a nozzle reversibly and                                    adiabatically from 500 kPa, 500 K to 100 kPa. What is the exit velocity?                                       Take g = 1.4 and R = 0.287 .
   System            :   Open
   Process          :   Reversible adiabatic expansion
   Known            :   1) Inlet pressure                       = 500 kPa
                            2) Inlet temperature                 = 500 K
                            3) Exit pressure                        = 100 kPa
                            4) The ratio of Specific heats    = 1.4
                            5) Characteristic Gas constant = 0.287
   To find           :   Exit velocity
   Diagram         :


   Analysis          :   Applying Steady Flow Energy Equation
                                        
                             Therefore
                                     
                            where Cp and T2 are unknowns.
   To find CP
                                        CP - CV = R
                                  
                                             
                            Substituting g and R we get
                                             
   To find T2
                         It is stated in the problem that the process of expansion is reversible.                                 Therefore  
                                              
                         Also the process is given as adiabatic. That is
                                            
                         (or)                 ds = 0
                                         S2 - S1 = 0
                        
                                              
                                                  
                                                                = 315.8 K
                         Substituting numerical values for T2 and Cp, we get
                                              
Prob 5.16 :       Show from the first principle that, for a perfect gas with constant                               specific heat capacities expanding polytropically (pvn = constant) in a                         non-flow process, the change of entropy can be expressed by
                                     
                        Gaseous methane is compressed polytropically by a piston from 25oC                         and 0.8 bar to a pressure of 5.0 bar. Assuming an index of compression                                of 1.2, calculate the change of entropy and workdone, per unit mass of                                 gas. The relative molecular weight of methane is 16 and g = 1.3. 
   System            :  Closed
   Process          :  Polytropic (pVn = C)
   Known            :  1) T1   =   298 K
                           2)       p1  =   80 kPa
                           3)  p2   =   500 kPa
                           4)  n   =   1.2
                           5)  M =   16
                           6)  g    =   1.3
   To find           :
                           1)  1W2 - Work done
                           2)  DS - Change in entropy
   Analysis          :  a)  To prove S2 - S1 =
                            From First Law of Thermodynamics
                                       Q12 = 1W2 + DU
                                     
                         In differential form                                                      
                                        for a polytropic process
                         Therefore
                           Upon integration we get
                                              
                           From the process relation
                                                           
                           Substituting for  we get
                                              
                           We know that R = CP - CV
                                                       R = CV (g - 1)
                                                   
                           Substituting for CV we get
                                              
                           (2)   Workdone
                                            
                                                          = 404.45 K
                        Substituting numerical values
                                                             
                        (3)  Change in entropy
                                               
   Comment       :   The negative sign in work indicates that work is given into the system.                                   The negative sign in entropy change indicates that there is a heat rejection                                       by the system to the ambient during compression.      
Prob 5.17 :       A closed system undergoes the internally reversible process as shown                         below :
                       






                        Compute the heat transfer.
   System           :   Closed
   Process         :   Defined by a straight line on a T-S diagram.
   Known           :   T1  = 200 K
                           T2  = 600 K
                           S1   = 1 kJ/K
                           S2   = 3 kJ/K
   To find          :   Heat transfer
   Analysis         :   Q = Area under the curve representing the process in a T-S diagram
                                = 800 kJ
Prob 5.18 :       In a refrigerant condenser superheated vapour of ammonia enters                              steadily at 1.4 MPa, 70oC. It leaves the condenser at 20oC. At 1.4 MPa                                  condensation begins and ends at 36.28oC. Cooling water enters the                              condenser at 10oC and leaves 15oC. Determine
                        (a)        the amount of heat rejected per kg of ammonia vapour condensed                                     for the given inlet and exit conditions.
                        (b)        mass of water to be supplied for each kg of ammonia vapour                              condensed
                        (c)  the change in specific entropy of ammonia
                        (d)        the entropy generation per kg of ammonia
                        Take Cpvapour = 2.9 kJ/kgK, Cpliquid = 4.4 kJ/kgK and latent heat of                                             evaporation of ammonia at 1.4 MPa is 1118 kJ/kg. Also represent the                                 process in a T-s diagram.
   System           :   Open
   Process         :   Steady flow process
   Known           :   T1    =    70oC
                           P1     =    1.4 MPa
                           T2    =    20oC
                           TW1  =    10oC
                           TW2  =    15oC

   To find          :   (a)              the amount of heat rejected per kg of ammonia vapour condensed                                for the given inlet and exit conditions.
                           (b)   mass of water to be supplied for each kg of ammonia vapour                                          condensed
                           (c)    the change in specific entropy of ammonia
                           (d)  the entropy generation per kg of ammonia
   Diagrams      :


   Analysis         :   (a) Heat rejected per kg of ammonia
                                          Q1-2 = Q1 - 2a + Q2a - 2b + Q2b - 2
                                                
                                                   = 2.9 (70 - 36.28) + 1118 + 4.4 (36.28 - 20)
                                                  = 1287.42 kJ/kg
                           (b) Water flow rate required per kg of ammonia
                           
                                                   = 61.51
                           (c) Change in Specific entropy of ammonia
                                                   = DS1 - 2a + DS2a - 2b + DS2b - 2
                                                                                                              
                                                   = - 4.153
                        (d)          DSuniverse = DSWater + DSammonia
                        where      DSWater = mCp ln
                                                  = 61.51 ´ 4.186 ´ ln 
                                                  = 4.509
                        Substituting the values we get
                                       DSuniverse = 4.509 + (- 4.153)
                                                  = 0.356
   Comment       :   As heat is removed from ammonia its entropy decreases whereas                                   entropy of water increases as it receives heat. But total entropy                                     change will be positive as heat is transferred through finite temperature                                       difference.
Prob 5.19 :       The specific heats of a gas are given by CP = a + kT and CV = b + kT,                         where a, b and k are constants and T is in K. Show that for an isentropic                                       expansion of this gas
                                      Tb na-b ekT = constant
   System           :   Closed
   Process         :   Isentropic
   Known           :      1)  CP = a + kT
                              2)  CV = b + kT
   To prove        :   Tb na - b ekT = constant for an isentropic process
    Proof            :   For a gas
                           CP - CV = (a + kT) - (b + kT)
                           (or)    R = a - b
                           For an isentropic process
                                                           ds = 0
                           (or)           
                           Substituting for CV and R
                           
                           Upon integration
                            blnT + KT + (a - b) lnn = constant
                           Taking antilog
                                             Tb eKT na - b = constant
Prob 5.20 :       Calculate the entropy change of the universe as a result of the following                               process :
                        (a)  A metal block of 0.8 kg mass and specific heat capacity 250 J/kgK                                       is placed in a lake at 8oC
                        (b)  The same block, at 8oC, is dropped from a height of 100 m into the                                      lake.
                        (c)  Two such blocks, at 100oC and 0oC, are joined together.
Case (a)
   System           :   A metal block
   Process         :   Cooling the metal block by dipping it in a lake.
   Known           :   1) Initial temperature of the block (T1)=100 + 273   = 373 K
                           2) Final temperature of the block (T2)  = 8 + 273     = 281 K
                           3) Mass of the metal block (m)                               = 0.8 Kg
                           4) Specific heat capacity of the metal block (C)       = 250
   To find          :   Entropy change of the universe
   Diagram        :

   Analysis :              DSuniverse = DSsystem + DSsurroundings
                        Where
                              
                      
                        Where  Qsur = - Qsys
                                          = - mC (T2 - T1)
                                          = - 0.8 ´ 250 (281 - 373)
                                          = 18400 J   
                   
                                        
            Substituting the values we get
                             DSuniverse  = -56.6 + 65.48
                                           = 8.84 J/K             
   Comment :         As discussed earlier the entropy change of the universe is positive.                                The reason is the irreversible heat transfer through finite temperature                                     difference from the metal block to the lake.
Case (b)
   System           :   A metal block
   Process         :   Falling of the metal block into the lake and reaching equilibrium
   Known           :   1) Initial Temperature                                       = 281 K
                           2) Final Temperature                                        = 281 K
                           3) Initial height                                                = 100 m
                           4) mass of the metal block (m)                          = 0.8 kg
                           5) Specific heat capacity of the metal block (C) = 250 J/kgK
   Diagrams      :









   Analysis         :      DSuniverse = DSsystem + DSsurroundings
                            Where DSsystem = 0, as the system is at the same temperature at both the                                   initial and final state.
                       
                             Qsurroundings = DEsystem
                                           = mgh
                                           = 0.8 ´ 9.81 ´ 100 = 784.8 J
                    
                    
   Comment       :   Increase in entropy of the universe indicates that there is a irreversibility                                     or degradation of energy. That is the high grade potential energy is                                     converted low grade energy during this process.
Case (c)
   Systems         :   Two metal blocks
   Process         :   Two metal blocks are brought in thermal contact and allowed              to reach                                        equilibrium.
   Known           :   Initial temperatures of the blocks
                                    T1a  = 373 K
                                    T1b  = 273 K
   To find          :   Entropy change of the universe
   Diagrams      :




   Analysis         :      DSuniverse = DSa + DSb
                        Where
                                                
   To find T2
                                      Qa = - Qb
                      mc (T2 - T1a) = - mc (T2 - T1b)
                                     
                          

   Comment       :   In this process also the heat transfer through finite temperature                                     difference makes the process irreversible which in turn results in                                   increase in entropy of the universe.
Prob 5.21 :       Each of three identical bodies satisfies the equation U = CT, where C                         is the heat capacity of each of the bodies. Their initial temperatures                            are 200 K, 250 K and 540 K. If C = 8.4 kJ/K, what is the maximum                            amount of work that can be extracted in a process in which these                                bodies are brought to a final common temperature ?
   System           :   Three identical bodies
   Process         :   Extracting work with heat transfer among the three bodies so that they                                   reach a common temperature.
   Known           :   Initial temperature of the three bodies
                           T1a = 540 K
                           T1b = 250 K
                           T1c = 200 K
                           Heat capacity of all the three bodies = 8.4 T
   To find          :   The maximum amount of work that can be extracted.
   Diagram        :


   Analysis         :   Let us assume that the final temperature is greater than 250 K, so that                                    heat is transferred from body (1) to bodies (2) and (3).
                            The net work obtained
                                    W = Q1 - Q2 - Q3
                                                = (DU)1 - (DU)2 - (DU)3
                                                = C [(540 - T2) - (T2 - 250) - (T2 - 200)]
                                                = 8.4 [990 - 3T2]
                        This work will be maximum if the process under consideration is                                   reversible. Therefore
                                                        DS1 + DS2 + DS3 = 0
                       
                        Therefore T2 = 300 K
This is the condition for the process to be reversible. Hence the maximum work that can be obtained is
                                 Wmax = 8.4 (990 - 3 ´ 300)
                                                      = 8.4 (90)
                                          = 756 kJ                
Prob 5.22 :       A resistor of 50 ohm resistance carries a constant current of 5A. The                         ambient temperature and the temperature of the resistor remain to                            be 27oC over a period of 10 seconds. What is the entropy change of the                                 resistor, ambient and the universe ?
   System           :   A resistor
   Process         :   Passing of the electrical current through a resistor at constant                                       temperature.
   Known           :   1)   Initial and final temperature of the resistor     = 300 K
                           2)   Ambient Temperature                                   = 300 K
                           3)   Duration (t)                                                  = 10 seconds
   To find          :
                           1) DSresistor
                           2) DSambient
                           3) DSuniverse
   Analysis         :  
                            DSuniverse       = DSresistor + DSambient
                                              = 0 + 41.7
                                              = 41.7
   Comment       :   When current passes through a resistor it is converted into heat. As the                                  resistor is to be maintained at the same temperature the heat is dissipated                                       into the ambient and hence the process is irreversible resulting in                                       increase of entropy of the universe.
Prob 5.23 :       A closed system is assumed to have a heat capacity at constant volume                                  where a = 0.002 and T is the temperature in K.
                        The system is originally at 600 K and a thermal reservoir at 300 K is                                       available. What is the maximum amount of work that can be recovered                       as the system is cooled down to the temperature of the reservoir ?
   System            :   A closed system
   Process          :   Obtaining work with the help of the heat transfer from the system to                                      the reservoir.
   Known            :   1)   Cv  =  e0.002T
                            2)   T1  =  600 K
                            3)   T2  =  300 K
   To find           :   Wmax
   Diagram         :

       :                    Q1   = DU
                                                  
                                                   
                         If the work is to be maximum, the process must be reversible. Therefore
                                     (DS)universe = 0
                          DSsystem + DSreservoi
                         Neglecting higher order terms,
                                                   
                        Therefore DSreservoir = -DS system
                                                     = 1.731       
                                  
                     Thus maximum work = Q1 - Q2
                                                      = 911 - 519.3
                                                      = 391.7 kJ